Technology Guides T1 Hardware

T2 Software

>T3 Data and Databases
T4 Telecommunications
TECHNOLOGY GUIDE

T5 The Internet and the Web
T6 Technical View of System Analysis and Design

Data and Databases

T3.1
File Management

T3.2
Databases and Database
Management Systems

T3.3
Logical Data Organization

T3.4
Creating Databases

T3.5
Emerging Database Models

T3.6
Data Warehouses

T3.7
Database Management

T3.8
Emerging Technologies:
IP-based Storage, SANSs,

and NAS

T3.9
Data Storage Infrastructure
and Management

T3.1

T3.2 ", TECHNOLOGY GUIDES DATA AND DATABASES

T3.1 FILE MANAGEMENT

Accessing Records
from Computer
Files

FIGURE T3.1 Hierarchy
of data for a computer-
based file.

A computer system organizes data in a hierarchy that begins with bits, and pro-
ceeds to bytes, fields, records, files, and databases (see Figure T3.1). A bit repre-
sents the smallest unit of data a computer can process (i.e., a 0 or a 1). A group
of eight bits, called a byte, represents a single character, which can be a letter, a
number, or a symbol. A logical grouping of characters into a word, a group of
words, or a complete number is called a field. For example, a student’s name
would appear in the name field.

A logical group of related fields, such as the student’s name, the course taken,
the date, and the grade, comprise a record. A logical group of related records is
called a file. For example, the student records in a single course would consti-
tute a data file for that course. A logical group of related files would constitute
a database. All students’ course files could be grouped with files on students’
personal histories and financial backgrounds to create a student’s database.

Another way of thinking about database components is that a record
describes an entity. An entity is a person, place, thing, or event on which we
maintain data. Each characteristic or quality describing a particular entity is
called an attribute (corresponds to a field on a record).

Every record in a file should contain at least one field that uniquely iden-
tifies that record so that the record can be retrieved, updated, and sorted. This
identifier field is called the primary key. For example, a student record in a
U.S. college could use the Social Security number as its primary key. In addition,
locating a particular record may require the use of secondary keys. Secondary
keys are other fields that have some identifying information, but typically do
not identify the file with complete accuracy. For example, the student’s last
name might be a secondary key. It should not be the primary key, as more than
one student can have the same last name.

Records can be arranged in several ways on a storage medium, and the arrange-
ment determines the manner in which individual records can be accessed.
In sequential file organization, data records must be retrieved in the same
physical sequence in which they are stored. (The operation is like a tape
recorder.) In direct or random file organization, users can retrieve records
in any sequence, without regard to actual physical order on the storage medium.

l Record l Record
E— Field Field I ﬂl—
Byte I Byte l Byte Byte
Bit Bit Bit I Bit

B

T3.1 FILE MANAGEMENT g T3.3

Cylinder Index

Cylinder Highest Key
T 1 100
174 Data |[— 2 200 -

1 3 300

Key 4 400

5) 500

Track Index Cylinder 1 Track Index Cylinder 2 Track Index Cylinder 3
Track Number Highest Key Track Number Highest Key Track Number Highest Key
1 10 1 110 1 210
2 20 2 120 2 220
3 30 3 130 3 230
4 40 4 140 - 4 240
5) 50 5 150 5 250
6 60 6 160 6 260
7 70 7 170 7 270
8 80 8 180 8 280
\
Track #8 Cylinder 2
M <t
171 | Data ﬂ] 172 | Data 173 | Data ﬂ] 174 | Data 175 | Data ﬂ] 176 | Data

FIGURE T3.2 Indexed sequential access method.

(The operation is like a CD drive.) Magnetic tape utilizes sequential file organ-
ization, whereas magnetic disks use direct file organization.

The indexed sequential access method (ISAM) uses an index of key
fields to locate individual records (see Figure T3.2). An index to a file lists the
key field of each record and where that record is physically located in storage.
Records are stored on disks in their key sequence. A track index shows the high-
est value of the key field that can be found on a specific track. To locate a spe-
cific record, the track index is searched to locate the cylinder and the track
containing the record. The track is then sequentially read to find the record.

The direct file access method uses the key field to locate the physical
address of a record. This process employs a mathematical formula called a trans-
form algorithm to translate the key field directly into the record’s storage loca-
tion on disk. The algorithm performs a mathematical calculation on the record key,
and the result of that calculation is the record’s address. The direct access method
is most appropriate when individual records must be located directly and rapidly
for immediate processing, when a few records in the file need to be retrieved at
one time, and when the required records are found in no particular sequence.

T3.4 " TECHNOLOGY GUIDES DATA AND DATABASES

FIGURE T3.3 Computer-
based files of this type
cause problems such as
redundancy, inconsis-
tency, and data isolation.

Problems Arising
from the File
Environment

. Class Class
Registrar —— -
programs file
A) Accounts Accounts
ccountmg ————p|)
programs file
Athletics s > Spprts
programs file

Organizations typically began automating one application at a time. These sys-
tems grew independently, without overall planning. Each application required
its own data, which were organized into a data file. This approach led to redun-
dancy, inconsistency, data isolation, and other problems. Figure T3.3 uses a uni-
versity file environment as an example.

The applications (e.g., registrar, accounting, or athletics) would share some
common core functions, such as input, report generation, querying, and data
browsing. However, these common functions would typically be designed, coded,
documented, and tested, at great expense, for each application. Moreover, users
must be trained to use each application. File environments often waste valuable
resources creating and maintaining similar applications, as well as in training
users how to use them.

Other problems arise with file management systems. The first problem is
data redundancy: As applications and their data files were created by differ-
ent programmers over a period of time, the same data could be duplicated in
several files. In the university example, each data file will contain records about
students, many of whom will be represented in other data files. Therefore, stu-
dent files in the aggregate will contain some amount of duplicate data. This
wastes physical computer storage media, the students’” time and effort, and the
clerks’ time needed to enter and maintain the data.

Data redundancy leads to the potential for data inconsistency. Data incon-
sistency means that the actual values across various copies of the data no longer
agree or are not synchronized. For example, if a student changes his or her
address, the new address must be changed across all applications in the univer-
sity that require the address.

File organization also leads to difficulty in accessing data from different
applications, a problem called data isolation. With applications uniquely
designed and implemented, data files are likely to be organized differently,
stored in different formats (e.g., height in inches versus height in centimeters),
and often physically inaccessible to other applications. In the university exam-
ple, an administrator who wanted to know which students taking advanced
courses were also starting players on the football team would most likely not
be able to get the answer from the computer-based file system. He or she would
probably have to manually compare printed output data from two data files.
This process would take a great deal of time and effort and would ignore the
greatest strengths of computers—fast and accurate processing.

T3.2 DATABASES AND DATABASE MANAGEMENT SYSTEMS ey T3.5

Additionally, security is difficult to enforce in the file environment, because
new applications may be added to the system on an ad-hoc basis; with more
applications, more people have access to data.

The file environment may also cause data integrity problems. Data values
must often meet integrity constraints. For example, the students” Social Security
data field should contain no alphabetic characters, and the students’ grade-
point-average field should not be negative. It is difficult to place data integrity
constraints across multiple data files.

Moreover, the shared file environment may have concurrency problems.
While one application is updating a record, another application may access that
record. As a result, the second application may not get the desired information.

Finally, applications should not have to be developed with regard to how
the data are stored. That is, applications and data in computer systems should
have application/data independence—that is, they should be independent.
In the file environment, the applications and their associated data files are
dependent on each other.

Storing data in data files that are tightly linked to their applications even-
tually led to organizations having hundreds of applications and data files, with
no one knowing what the applications did or what data they required. There
was no central listing of data files, data elements, or definitions of the data.
The numerous problems arising from the file environment approach led to the
development of databases.

T3.2 DATABASES AND DATABASE MANAGEMENT SYSTEMS

Databases

The amount of data the average business collects and stores is doubling each
year. Businesses collect data from multiple sources, including customer-
relationship management and enterprise resource planning applications, online
e-commerce systems, and suppliers and business partners. The steadily falling
price of storage also fuels the data deluge, with the cost of storing 1 Mbyte of
data now about 1 percent of what it was 10 years ago. Organizations have found
databases to be the optimal way to store and access such huge amounts of data.

A database is an organized logical grouping of related files. In a database, data
are integrated and related so that one set of software programs provides access
to all the data, alleviating many of the problems associated with data file envi-
ronments. Therefore, data redundancy, data isolation, and data inconsistency are
minimized, and data can be shared among all users of the data. In addition secu-
rity and data integrity are increased, and applications and data are independent
of one another.

A centralized database has all the related files in one physical location.
Centralized database files on large, mainframe computers were the main data-
base platform for decades, primarily because of the enormous capital and oper-
ating costs of other alternatives. Not only do centralized databases save the
expenses associated with multiple computers, but they also provide database
administrators with the ability to work on a database as a whole at one loca-
tion. Files can generally be made more consistent with each other when they
are physically kept in one location because file changes can be made in a super-
vised and orderly fashion. Files are not accessible except via the centralized host
computer, where they can be protected more easily from unauthorized access

T3.6 ", TECHNOLOGY GUIDES DATA AND DATABASES

FIGURE T3.4 (a) Cen-
tralized database. (b) Dis-
tributed database with
complete or partial copies
of the central database in
more than one location.

Users
Los Angeles

Users
New York

Central
Location

Users Users
Chicago Kansas City
(a)
Users Users
New York Los Angeles

% \ New York Los Angeles/ %
\ Central Location /

& — Y~~~
= TE /New York\ i‘._\‘—%

s
% [Chicago Kansas City \ %
Users % g Users

Chicago Kansas City

(b)

or modification. Also, recovery from disasters can be more easily accomplished
at a central location.

Like all centralized systems, however, centralized databases are vulnerable
to a single point of failure. When the centralized database computer fails to
function properly, all users suffer. Additionally, access speed is often a problem
when users are widely dispersed and must do all of their data manipulations
from great distances, thereby incurring transmission delays.

A distributed database has complete copies of a database, or portions of a
database, in more than one location, which is usually close to the user (see Fig-
ure T3.4). There are two types of distributed databases: replicated and partitioned.

A replicated database has complete copies of the entire database in many
locations, primarily to alleviate the single-point-of-failure problems of a centralized
database as well as to increase user access responsiveness. There is significant

Database
Management
Systems

T3.2 DATABASES AND DATABASE MANAGEMENT SYSTEMS ey T3.7

overhead, however, in maintaining consistency among replicated databases, as
records are added, modified, and deleted.

A partitioned database is subdivided, so that each location has a portion
of the entire database (usually the portion that meets users” local needs). This
type of database provides the response speed of localized files without the need
to replicate all changes in multiple locations. One significant advantage of a par-
titioned database is that data in the files can be entered more quickly and kept
more accurate by the users immediately responsible for the data. On the other
hand, widespread access to potentially sensitive company data can significantly
increase corporate security problems. Telecommunications costs and associated
time delays can also be major factors.

SPECIALIZED DATABASES. There are many specialized databases, depending on
the type or format of data stored. For example, a geographical information
database (see Chapter 10) may contain location and other data for overlaying
on maps or images. Using this type of data, users are able to view customer and
vendor locations spatially instead of simply reading the actual addresses. A
knowledge database (knowledge base, see Chapters 10, 11, and 12) can store
decision rules used to evaluate situations and help users make decisions like an
expert. A multimedia database (see Chapter 10) can store data on many
media—sounds, video, images, graphic animation, and text.

The largest database on the drawing boards is at CERN, the European organ-
ization for nuclear and particle physics research in Geneva, Switzerland. CERN
is constructing a particle accelerator that will begin operating in 2006, and IT
managers at the laboratory are designing a system to collect up to 20 petabytes
of data (1 petabyte equals 1000 terabytes) from the accelerator every year,
potentially leading to the accumulation of hundreds of petabytes.

The program (or group of programs) that provides access to a database is known
as a database management system (DBMS). The DBMS permits an organi-
zation to centralize data, manage them efficiently, and provide access to the
stored data by application programs. (For a list of capabilities and advantages of
the DBMS, see Table T3.1.) The DBMS acts as an interface between application
programs and physical data files (see Figure T3.5) and provides users with tools
to add, delete, maintain, display, print, search, select, sort, and update data.
These tools range from easy-to-use natural language interfaces to complex
programming languages used for developing sophisticated database applications.

DBMSs are used in a broad range of information systems. Some are loaded
on a single user’s personal computer and used in an ad-hoc manner to support
individual decision making. For example, Microsoft’s Access and Coral’s Para-
dox are desktop DBMSs. Others (such as IBM’s DB2) are located on several
interconnected mainframe computers and are used to support large-scale trans-
action processing systems, such as order entry and inventory control systems.
Still others (such as Oracle’s 9i) are interconnected throughout an organization’s
local area networks, giving individual departments access to corporate data.
Because a DBMS need not be confined to storing just words and numbers, firms
use them to store graphics, sounds, and video as well.

A database management system provides the ability for many different users
to share data and process resources. But as there can be many different users,

T3.8

FIGURE T3.5 Database
management system pro-
vides access to all data in
the database.

%S, TECHNOLOGY GUIDES DATA AND DATABASES

TABLE T3.1 Advantages and Capabilities of a DBMS

@® Access and availability of information can be increased.

® Data access, utilization, security, and manipulation can be simplified.

® Data inconsistency and redundancy is reduced.

® Program development and maintenance costs can be dramatically reduced.

® Captures/extracts data for inclusion in databases.

® Quickly updates (adds, deletes, edits, changes) data records and files.

® Interrelates data from different sources.

® Quickly retrieves data from a database for queries and reports.

® Provides comprehensive data security (protection from unauthorized access, recov-
ery capabilities, etc.).

@ Handles personal and unofficial data so that users can experiment with alternative
solutions based on their own judgment.

® Performs complex retrieval and data manipulation tasks based on queries.

® Tracks usage of data.

® Flexibility of information systems can be improved by allowing rapid and inex-
pensive ad hoc queries of very large pools of information.

® Application-data dependence can be reduced by separating the logical view of data
from its physical structure and location.

there are many different database needs. How can a single, unified database
meet the differing requirements of so many users? For example, how can a sin-
gle database be structured so that sales personnel can see customer, inventory,
and production maintenance data while the human resources department main-
tains restricted access to private personnel data?

A DBMS minimizes these problems by providing two views of the database
data: a physical view and a logical view. The physical view deals with the
actual, physical arrangement and location of data in the direct access storage devices
(DASDs). Database specialists use the physical view to make efficient use of stor-
age and processing resources.

Users, however, may wish to see data differently from how they are stored,
and they do not want to know all the technical details of physical storage. After
all, a business user is primarily interested in using the information, not in how
it is stored. The logical view, or user’s view, of a database program represents
data in a format that is meaningful to a user and to the software programs that

’ D Class
Registrar < ——
’ S=wn programs
|
D Accounts Database Iélaat:ts)?islz
Accountin <— <—>| §
unting E==E programs ma:asgtee)r;ent Accounts file
’ Sports e
) D Sports |
Athletics <
S=w=n programs

T3.2 DATABASES AND DATABASE MANAGEMENT SYSTEMS ey T3.9

process that data. That is, the logical view tells the user, in user terms, what is
in the database.

Omne strength of a DBMS is that while there is only one physical view of
the data, there can be an endless number of different logical views—one specif-
ically tailored to each individual user, if necessary. This feature allows users to
see database information in a more business-related way rather than from a
technical, processing viewpoint. Clearly, users must adapt to the technical
requirements of database information systems to some degree, but DBMS logical
views allow the system to adapt to the business needs of the users.

Database management systems are designed to be relatively invisible to the
user. To interact with them, however, one needs to understand the procedures
for interacting, even though much of their work is done behind the scenes and
is therefore invisible or “transparent” to the end user. Most of this interaction
occurs by using DBMS languages.

DBMS LANGUAGES. A DBMS contains four major components: the data model,
the data definition language, the data manipulation language, and the data dic-
tionary. The data model defines the way data are conceptually structured. Exam-
ples of model forms include the hierarchical, network, relational, object-oriented,
object-relational, hypermedia, and multidimensional models. The data definition
language (DDL) is the language used by programmers to specify the types of
information and structure of the database. It is essentially the link between the
logical and physical views of the database. (“Logical” refers to the way the user
views data, and “physical” to the way the data are physically stored and processed.)

A DBMS user defines views or schema using the DDL. The schema is the
logical description of the entire database and the listing of all the data items and
the relationships among them. A subschema is the specific set of data from the
database that is required by each application.

The DDL is used to define the physical characteristics of each record, the
fields within a record, and each field’s logical name, data type, and character
length. The DDL is also used to specify relationships among the records. Other
primary functions of the DDL are the following:

@ Provide a means for associating related data.
® Indicate the unique identifiers (or keys) of the records.
® Set up data security access and change restrictions.

The data manipulation language (DML) is used with a third- or fourth-
generation language to manipulate the data in the database. This language con-
tains commands that permit end users and programming specialists to extract
data from the database to satisfy information requests and develop applications.
The DML provides users with the ability to retrieve, sort, display, and delete the
contents of a database. The DML generally includes a variety of manipulation
verbs (e.g., SELECT, MODIFY, DELETE) and operands for each verb.

Requesting information from a database is the most commonly performed
operation. Because users cannot generally request information in a natural lan-
guage form, query languages form an important component of a DBMS. Struc-
tured query language (SQL) is the most popular relational database language,
combining both DML and DDL features. SQL offers the ability to perform com-
plicated searches with relatively simple statements. Keywords such as SELECT
[to specify desired attribute(s)], FROM (to specify the table(s) to be used), and

T3.10 " TECHNOLOGY GUIDES DATA AND DATABASES

WHERE (to specify conditions to apply in the query) are typically used for the
purpose of data manipulation. For example, a state legislator wants to send con-
gratulatory letters to all students from her district graduating with honors from
a state university. The university information systems staff would query the stu-
dent relational database with an SQL statement such as SELECT (Student Name)
FROM (Student Table) WHERE (Congressional District 57 and Grade Point Aver-
age 3.4 or higher).

End users often use an approach called query-by-example (QBE) instead
of SQL. The user selects a table and chooses the fields to be included in the
answer. Then the user enters an example of the data he or she wants. The QBE
provides an answer based on the example. QBE hides much of the complexity
involved with SQL.

The data dictionary stores definitions of data elements and data characteris-
tics such as usage, physical representation, ownership (who in the organization is
responsible for maintaining the data), authorization, and security. A data element
represents a field. Besides listing the standard data name, the dictionary lists the
names that reference this element in specific systems and identifies the individu-
als, business functions, applications, and reports that use this data element.

Data dictionaries provide many advantages to the organization. Because the
data dictionary provides standard definitions for all data elements, the potential
for data inconsistency is reduced. That is, the probability that the same data ele-
ment will be used in different applications, but with a different name, is
reduced. In addition, data dictionaries provide for faster program development
because programmers do not have to create new data names. Data dictionaries
also make it easier to modify data and information because programmers do not
need to know where the data element is stored or what applications use the
data element in order to make use of it in a program.

Data dictionaries are a form of metadata. Metadata is information about
information. Metadata matters in the business-to-business world as well. As
more corporate transactions are conducted over the Net, each needs metadata
so that companies can track the transaction and analyze its success.

Database environments ensure that data in the database are defined once
and consistently, and that they are used for all applications whose data reside in
the database. Applications request data elements from the database and are
found and delivered by the DBMS. The programmer and end user do not
have to specify in detail how or where the data are to be found.

DBMS BENEFITS. Database management systems provide many advantages to
the organization:

® Improved strategic use of corporate data

® Reduced complexity of the organization’s information systems environment

® Reduced data redundancy and inconsistency

® Enhanced data integrity

® Application-data independence

® Improved security

® Reduced application development and maintenance costs

® Improved flexibility of information systems

® Increased access and availability of data and information

T3.3 LOGICAL DATA ORGANIZATION 'y T3.11

TABLE T3.2 Comparison of Database Management
Systems

Product Rating by Voting

Database System Mean Rank Standard Deviation
Access 5.00 12 3.45
Oracle 6.25 7 3.17
SQL Server 5.68 11 3.16
FoxPro 6.22 8 3.70
Ingres 7.31 3 2.46
Omni 6.40 6 4.48
Dbase 7.44 2 3.61
Informix 6.78 4 291
IBM DB2 7.78 1 1.56
Paradox 6.56 5 2.55
SyBase 5.86 10 3.80
Progress 6.00 9 5.29
Source: Post and Kagan (2001).

A DBMS is a complex software tool with many features. Its multiple
attributes and variations make it difficult for developers to compare products.
Moreover, individual developers and administrators have their own personal
preferences that are driven by a systems professional’s knowledge investment
in the current product. Today, DBMSs are encountering large data sets, multi-
dimensional data formats and the use of distributed data inputs. Some scholars
discussed the need for data management systems to be designed for the changes
in data type and format that would take advantage of faster hardware process-
ing capabilities. Others argued that as database systems become more complex
in nature, added data management product features will be needed to handle
the complexity, which includes object management, knowledge management
and multi-faceted issues related to data, objects and knowledge. Actually, certain
PC-implemented tools are adding similar features that mimic enterprise-oriented
products because user demand is positioning the PC tools due to the issues of
rapid development timelines, business process reengineering and the increased
processing capabilities of the PC workstation. A survey was done by Post and
Kagan (2001) about DBMS in terms of its use and demand for various features
of current DBMS regardless of specific implementation. The results are shown in
Table T3.2. In another survey, by Bloeman and Brunner, IBM DB2 # UDB (V.8.1)
is considered the best product (crmandcontactcentre247.com).

T3.3 LoacicaL DATA ORGANIZATION

Just as there are many ways to structure business organizations, there are many
ways to structure the data those organizations need. A manager’s ability to use
a database is highly dependent on how the database is structured logically and
physically. The DBMS separates the logical and physical views of the data, mean-
ing that the programmer and end user do not have to know where and how
the data are actually stored. In logically structuring a database, businesses need
to consider the characteristics of the data and how the data will be accessed.

T3.12 " TECHNOLOGY GUIDES DATA AND DATABASES

The Hierarchical
Database Model

FIGURE T3.6 Hierarchical
database model.

There are three basic models for logically structuring databases: hierarchical,
network, and relational. Four additional models are emerging: multidimensional,
object-oriented, small-footprint, and hypermedia. (The latter three of these emerg-
ing models are explained in Section T3.5.) Using these various models, database
designers can build logical or conceptual views of data that can then be physi-
cally implemented into virtually any database with any DBMS. Hierarchical, net-
work, and object-oriented DBMSs usually tie related data together through
linked lists. Relational and multidimensional DBMSs relate data through infor-
mation contained in the data. In this section we will present the three basic
models. (Others are described in Chapter 10.)

The hierarchical structure was developed because hierarchical relationships are
commonly found in many traditional business organizations and processes. The
hierarchical database model relates data by rigidly structuring data into an
inverted “tree” in which records contain two elements:

1. A single root or master field, often called a key, which identifies the type,
location, or ordering of the records.

2. A variable number of subordinate fields that defines the rest of the data
within a record.

As a rule, while all fields have only one “parent,” each parent may have many
“children.” An example of a hierarchical database is shown in Figure T3.6.

The strongest advantage of the hierarchical approach is the speed and effi-
ciency with which it can be searched for data. This speed is possible because so
much of the database is eliminated in the search with each “turn” going down the
tree. As shown in Figure T3.6, half the records in the database (East Coast Sales)
are eliminated once the search turns toward West Coast Sales, and two-thirds of
the West Coast Sales are eliminated once the search turns toward stemware.

Finally, the explicit child/parent relationships in a hierarchical model mean
that the integrity of the database is strongly maintained. Every child in a hier-
archical database must belong to a parent, and if a parent is eliminated from the
database, all its children automatically become children of the parent’s parent.

But the hierarchical approach does have some deficiencies. In the hierarchi-
cal model, each relationship must be explicitly defined when the database is
created. Each record in a hierarchical database can contain only one key field,
and only one relationship is allowed between any two fields. This can create
a problem because real-world data do not always conform to such a strict hier-
archy. For example, in a matrix organization, an employee might report to
more than one manager, a situation that would be awkward for a hierarchical

China I Flatware Stemware I China I Flatware Stemware I

East Coast I West Coast

(pyly

FIGURE T3.7 Network
database model.

The Network
Database Model

The Relational
Database Model

T3.3 LOGICAL DATA ORGANIZATION 'y T3.13

=N

East Coast West Coast

| China | | Flatware |I | Stemware|

structure to handle. Moreover, all data searches must originate at the top or
“root” of the tree and work downward from parent to child.

Another significant disadvantage of the hierarchical model is the fact that it
is difficult to relate “cousins” in the tree. In the example shown in Figure T3.6,
there is no direct relationship between china sales on the East Coast and china
sales on the West Coast. A comparison of company-wide china sales would entail
two separate searches and then another step combining the search results.

The network database model creates relationships among data through a
linked-list structure in which subordinated records (called members, not children)
can be linked to more than one parent (called an owner). Similar to the
hierarchical model, the network model uses explicit links, called pointers, to link
subordinates and parents. That relationship is called a set.

Physically, pointers are storage addresses that contain the location of a
related record. With the network approach, a member record can be linked to
an owner record and, at the same time, can itself be an owner record linked to
other sets of members (see Figure T3.7). In this way, many-to-many relation-
ships are possible with a network database model—a significant advantage of
the network model over the hierarchical model.

Compare Figure T3.7 with Figure T3.6. In Figure T3.7, sales information
about china, flatware, and stemware is in one subordinate or member location.
Information about each has two parents or owners, East Coast and West Coast.
The problem of getting a complete picture of nationwide china sales that exists
with the hierarchical model does not occur with the network model. Moreover,
searches for data do not have to start at a root—there may not even be a sin-
gle root to a network—which gives much greater flexibility for data searches.

The network model essentially places no restrictions on the number of rela-
tionships or sets in which a field can be involved. The model, then, is more
consistent with real-world business relationships where, for example, vendors
have many customers and customers have many vendors. However, network
databases are very complex. For every set, a pair of pointers must be main-
tained. As the number of sets or relationships increases, the overhead becomes
substantial. The network model is by far the most complicated type of database
to design and implement.

While most business organizations have been organized in a hierarchical fashion,
most business data, especially accounting and financial data, have traditionally
been organized into tables of columns and rows. Tables allow quick compar-
isons by row or column, and items are easy to retrieve by finding the point of
intersection of a particular row and column. The relational database model is

T3.14 " TECHNOLOGY GUIDES DATA AND DATABASES

FIGURE T3.8 Relational
database model tables.

based on this simple concept of tables in order to capitalize on characteristics of
rows and columns of data, which is consistent with real-world business situations.

In a relational database, the tables are called relations, and the model is
based on the mathematical theory of sets and relations. In this model, each row
of data is equivalent to a record, and each column of data is equivalent to a field.
In the relational model terminology, a row is called a tuple, and a column is
called an attribute. However, a relational database is not always one big table
(usually called a flat file) consisting of all attributes and all tuples. That design
would likely entail far too much data redundancy. Instead, a database is usually
designed as a collection of several related tables.

There are some basic principles involved in creating a relational database. First,
the order of tuples or attributes in a table is irrelevant, because their position rel-
ative to other tuples and attributes is irrelevant in finding data based on specific
tuples and attributes. Second, each tuple must be uniquely identifiable by the data
within the tuple—some sort of primary key data (for example, a Social Security
number or employee number). Third, each table must have a unique identifier—
the name of the relation. Fourth, there can be no duplicate attributes or tuples.
Finally, there can be only one value in each row-column “cell” in a table.

In a relational database, three basic operations are used to develop useful
sets of data: select, join, and project. The select operation creates a subset con-
sisting of all records in the file that meet stated criteria. “Select” creates, in other
words, a subset of rows that meet certain criteria. The join operation com-
bines relational tables to provide the user with more information than is avail-
able in individual tables. The project operation creates a subset consisting of
columns in a table, permitting the user to create new tables that contain only
the information required.

One of the greatest advantages of the relational model is its conceptual sim-
plicity and the ability to link records in a way that is not predefined (that is, they
are not explicit as in the hierarchical and network models). This ability provides
great flexibility, particularly for end users. The relational or tabular model of data
can be used in a variety of applications. Most people can easily visualize the rela-
tional model as a table, but the model does use some unfamiliar terminology.

Consider the relational database example on East Coast managers shown in
Figure T3.8. The table contains data about the entity called East Coast man-
agers. Attributes or characteristics about the entity are name, title, age, and divi-
sion. The tuples, or occurrences of the entity, are the two records on A. Smith
and W. Jones. The links among the data, and among tables, are implicit, as they
are not necessarily physically linked in a storage device but are implicitly linked
by the design of the tables into rows and columns.

This property of implicit links provides perhaps the strongest benefit of the
relational model—{lexibility in relating data. Unlike the hierarchical and network
models, where the only links are those rigidly built into the design, all the
data within a table and between tables can be linked, related, and compared.
This ability gives the relational model much more data independence than the
hierarchical and network models. That is, the logical design of data into tables
can be more independent of the physical implementation. This independence

Division Title Employee
Code Name Code Description Name Title Code Division Code Age
01 Stemware 01 Director Smith, A. | 01 01 42

Comparing the
Database Models

T3.3 LOGICAL DATA ORGANIZATION 'y T3.15

allows much more flexibility in implementing and modifying the logical design.
Of course, as with all tables, an end user needs to know only two things: the
identifier(s) of the tuple(s) to be searched and the desired attribute(s).

The relational model does have some disadvantages: Because large-scale
databases may be composed of many interrelated tables, the overall design may
be complex and therefore have slower search and access times (as compared to
the hierarchical and network models). The slower search and access time may
result in processing inefficiencies, which led to an initial lack of acceptance of
the relational model. These processing inefficiencies, however, are continually
being reduced through improved database design and programming. Second,
data integrity is not inherently a part of this model as with hierarchical and net-
work models. Therefore, it must be enforced with good design principles.

OBJECT-RELATIONAL DATABASE SYSTEMS. Object-relational database products
are replacing purely relational databases. Object-relational database management
systems (ORDBMSs) have some of the capabilities of object-oriented database
systems as well as additional unique capabilities. (For details, see Katz, 1998.)

The main advantage of the hierarchical and network database models is pro-
cessing efficiency. The hierarchical and network structures are relatively easy for
users to understand because they reflect the pattern of real-world business rela-
tionships. In addition, the hierarchical structure allows for data integrity to be
easily maintained.

Hierarchical and network structures have several disadvantages, though. All
the access paths, directories, and indices must be specified in advance. Once
specified, they are not easily changed without a major programming effort.
Therefore, these designs have low flexibility. Hierarchical and network struc-
tures are programming intensive, time-consuming, difficult to install, and diffi-
cult to remedy if design errors occur. The two structures do not support ad-hoc,
English-language-like inquiries for information.

The advantages of relational DBMSs include high flexibility in regard to ad-
hoc queries, power to combine information from different sources, simplicity of
design and maintenance, and the ability to add new data and records without
disturbing existing applications.

The disadvantages of relational DBMSs include their relatively low process-
ing efficiency. These systems are somewhat slower because they typically require
many accesses to the data stored on disk to carry out the select, join, and proj-
ect commands. Relational systems do not have the large number of pointers car-
ried by hierarchical systems, which speed search and retrieval. Further, large
relational databases may be designed to have some data redundancy in order
to make retrieval of data more efficient. The same data element may be stored
in multiple tables. Special arrangements are necessary to ensure that all copies
of the same data element are updated together.

Table T3.3 summarizes the advantages and disadvantages of the three com-
mon database models.

Large relational databases may be designed to have some data redundancy
in order to make retrieval of data more efficient. The same data element may be
stored in multiple tables. Special arrangements are necessary to ensure that all
copies of the same data element are updated together. A visual comparison of
the three models is shown in Figure T3.9. The lines with arrows in the rela-
tional models show the duplication of information.

T3.16 "= TECHNOLOGY GUIDES DATA AND DATABASES

TABLE T3.3 Advantages and Disadvantages of Logical Data Models

Model Advantages Disadvantages
Hierarchical ~ Searching is fast and efficient. Access to data is predefined by ex-
database clusively hierarchical relationships,
predetermined by administrator.
Limited search/query flexibility. Not
all data are naturally hierarchical.
Network Many more relationships can This is the most complicated model
database be defined. There is greater to design, implement, and main-
speed and efficiency than tain. Greater query flexibility
with relational database than with hierarchical model, but
models. less than with relational mode.
Relational Conceptual simplicity; there are Processing efficiency and speed are
database no predefined relationships lower. Data redundancy is
among data. High flexibility in common, requiring additional
ad-hoc querying. New data and maintenance.
records can be added easily.
CL;\lstomer Zrodgct Quantity } Fields
Customer | Customer Product | Product alne SINDEN
a. Relational Number Name Number | Name Green M.1 10
8 Green M.1 Nut zrrow: ?_1 338
10 Brown S Bolt W:'.f 1 %
30 Black T.1 Washer Gre‘; o 250 Records
45 White U1 Screw Brown T1 120
Brown Ui 50
Customer Records Product Records

b. Hierarchical
v Y
Product M.1 U.1
Name Screw I
Quantity 100 50 I
c. Network
v v v
Product M.1 SA TA
Name | Nut | | Bolt |I |Washer | Screw
v v v v
uanity || 100 || || s50 || | 190 ||

FIGURE T3.9 Database structures.

XML Databases

T3.4 CREATING DATABASES gy T3.17

Extensible Markup Language (XML) databases can store whole documents
in their native XML format. Such a database makes an archive easier to search
by title, author, keywords, or other attributes. Relational databases, in contrast,
either convert documents into relational data (stored in tables) or treat them as
indiscriminate binary large objects (BLOBs), but it is difficult to find and to
retrieve the part of the BLOB that you want. XML database products include
Software AG’s Tamino XML Database and Ipedo’s XML Database System. X
Query is the XML query language used in these products, which can query a
large set of documents based on the name of an author, date filled, subject, or
keywords in the document.

T3.4 CREATING DATABASES

Entity-Relationship
Modeling

To create a database, designers must develop a conceptual design and a physi-
cal design. The conceptual design of a database is an abstract model of the
database from the user or business perspective. The physical design shows how
the database is actually arranged on direct access storage devices.

The conceptual database design describes how the data elements in the data-
base are to be grouped. The design process identifies relationships among data
elements and the most efficient way of grouping data elements together to meet
information requirements. The process also identifies redundant data elements
and the groupings of data elements required for specific applications. Groups of
data are organized, refined, and streamlined until an overall logical view of the
relationships among all of the data elements in the database appears. To pro-
duce optimal database design, entity-relationship modeling and normalization
are employed. These are described next.

Database designers often document the conceptual data model with an entity-
relationship (ER) diagram. ER diagrams consist of entities, attributes, and
relationships. In ER diagrams, the boxes represent entities, ovals represent
attributes, and the diamonds represent relationships. The attributes for each
entity are listed next to the entity.

An entity is something that can be identified in the users” work environ-
ment. In the university example, STUDENT and PROFESSOR are examples of
entity. Entities of a given type are grouped in entity classes. An instance of
an entity is the representation of a particular entity, so John Smith is an instance
of the STUDENT entity, and Sara Douglas is an instance of the PROFESSOR
entity.

Entities have attributes, or properties, that describe the entity’s character-
istics. In our example, attributes for STUDENT would be Name, IDNumber, and
Major. Examples of attributes for PROFESSOR would include Name, Depart-
ment, and ClassTaught.

Entity instances have identifiers, which are attributes that identify entity
instances. For example, STUDENT instances can be identified with IDNumber.
These identifiers are underlined on ER diagrams.

Entities are associated with one another in relationships, which can
include many entities. The number of entities in a relationship is the degree of
the relationship. Relationships of degree 2 are common and are called binary
relationships.

T3.18 "= TECHNOLOGY GUIDES DATA AND DATABASES

A student can have 1 Can . .
many courses. Student P Parking Permit
M A student can A parking permit can
have only 1 have only one student
parking permit
Can
have
A course can have
many students. | M
Course Key
1 Entitles
A course can have |
only 1 professor.
Can
have
Relationships
A professor can have
many courses. M
Keyfield
Professor y
(a)
STUDENT PARKING PERMIT
Student identification number Student identification number
Student Name Student Name
Student Address Student Address
COURSE PROFESSOR
Course Number Professor identification number
Course Name Professor Name
Course Time Professor Department

Course Place

FIGURE T3.10 Entity-relationship diagram model.

There are three types of binary relationships.

® In a 1:1 (one-to-one) relationship, a single-entity instance of one type is
related to a single-entity instance of another type. Figure T3.10 shows
STUDENT-PARKING PERMIT as a 1:1 relationship that relates a single
STUDENT with a single PARKING PERMIT. That is, no student has more
than one parking permit, and no parking permit is for more than one student.

® The second type of relationship, 1:M (one-to-many), is represented by the
COURSEPROFESSOR relationship in our example. This relationship means
that a professor can have many courses, but each course can have only one
professor. See Figure T3.10.

Normalization
of Relational
Databases

FIGURE T3.11 Lab rela-
tion (single key)—first
normal form.

T3.4 CREATING DATABASES "y T3.19

® The third type of relationship, M:M (many-to-many), is represented by the
STUDENT-COURSE and SCHEDULE-COURSE relationships in our example.
The first part of this relationship means that a student can have many
courses, and a course can have many students. The second part of the rela-
tionship means that a schedule can have many courses and a course can ap-
pear on many schedules (see Figure T3.10).

The ER diagrams are supported by tables. The diagrams help to ensure that
the relationships among the data elements in the database are logically struc-
tured. When the database includes many files it is difficult to navigate and find
data there. The ER acts like conceptual blueprints of the database. It represents
all entity relationships. The ER diagrams are often consulted to determine a
problem with a query or the complement changes.

In order to use a relational database model effectively, complex groupings of
data must be streamlined to eliminate redundant data elements and awkward
many-to-many relationships. The process of creating small, stable data struc-
tures from complex groups of data is called normalization.

Normalization is a method for analyzing and reducing a relational database
to its most parsimonious or streamlined form for minimum redundancy, maxi-
mum data integrity, and best processing performance. Specifically, normalization
has several goals:

@ Eliminate redundancy caused by fields repeated within a file or record, at-
tributes that do not directly describe the entity, and fields that can be derived
from other fields.

® Avoid update anomalies (i.e., errors from inserting, deleting, and modifying
records).

® Represent accurately the item being modeled.

@ Simplify maintenance and information retrieval.

Several levels of normalization exist, which build upon each other address-
ing increasingly specialized and complex normalization problems.

THE NORMALIZATION PROCESS. The concepts of functional dependency and
keys are fundamental to normalization. A functional dependency is a relation-
ship between or among attributes, where, given the value of one attribute, we can
obtain (or look up) the value of another attribute. For example, in Figure T3.11

IDNumber Major Lab Fee
3244 Management Inorganic 25
Chemistry
1697 Economics Physics 25
9611 Accounting Organic Chemistry 125
1234 Marketing Physics 25
-

T3.20 " TECHNOLOGY GUIDES DATA AND DATABASES

if we know the value of IDnumber, we can find the student’s major. Therefore,
we say that a student’s major is functionally dependent on the student’s identifi-
cation number, and that the student’s identification number is a determinant of
the student’s major.

T3.5 EMERGING DATABASE MODELS

Many of today’s applications require database capabilities that can store, retrieve,
and process diverse media and not just text and numbers. Full-motion video,
voice, photos, and drawings cannot be handled effectively or efficiently by either
hierarchical, network, or relational databases and the DBMS. For multimedia
and other complex data we use special data models.

The most common database models are:

® Multidimensional database. This is an additional database that enables end
users to quickly retrieve and present complex data that involve many di-
mensions (see Chapter 10).

® Deductive databases. Hierarchical, network, and relational DBMSs have
been used for decades to facilitate data access by users. Users, of course,
must understand what they are looking for, the database they are looking
at, and at least something about the information sought (like a key and
some field or attribute about a record). This approach, however, may not be
adequate for some knowledge-based applications that require deductive
reasoning for searches. As a result, there is interest in what is called deductive
database systems.

® Multimedia and hypermedia databases. These are analogous to contempo-
rary databases for textual and numeric data; however, they have been tailored
to meet the special requirements of dealing with different types of media
materials (see Chapter 10).

® Small-footprint databases. Small-footprint databases enable organizations
to put certain types of data in the field where the workers are located.
Whereas laptops were once the only portable machines capable of run-
ning a database, advances in technology (e.g., more powerful CPUs and
increased memory at lower cost) are enabling handheld devices and smart
phones to run some form of an SQL database and to synchronize that mo-
bile database with a central database at headquarters. The name comes
from the fact that the engines running these databases (e.g., Access) typi-
cally are small, and thus the databases do not use a lot of space in memory.
Small-footprint databases have replication mechanisms that take into
account the occasionally connected nature of laptops and handhelds, that
are programmed to resolve replication conflicts among mobile users, and
that ensure that data synchronization will survive a low-quality wireless
or modem connection. Small-footprint database technology also runs on
PDAs (such as those from Palm or Psion) and can be embedded in spe-
cialty devices and appliances (like a barcode scanner or medical tool).

® Object-oriented databases. In order to work in an object-oriented environ-
ment, it is necessary to use OO programming and OO databases. This topic
is presented next. (Also see the description in Chapter 10.)

T3.6 DATA WAREHOUSES "y T3.21

The Object- Although there is no common definition for object-oriented database, there is
Oriented Database agreement as to some of its features. Terminology in the object-oriented model,
Model similar to object-oriented programming languages, consists of objects, attributes,

classes, methods, and messages (see Technology Guide 2).

Object-oriented databases store both data and procedures acting on the data,
as objects. These objects can be automatically retrieved and processed. Therefore,
the OO database can be particularly helpful in multimedia environments, such as
in manufacturing sites using CAD/CAM. Data from design blueprints, photographic
images of parts, operational acoustic signatures, and test or quality control data
can all be combined into one object, itself consisting of structures and operations.
For companies with widely distributed offices, an object-oriented database can
provide users with a transparent view of data throughout the entire system.

Object-oriented databases can be particularly useful in supporting temporal
and spatial dimensions. All things change; sometimes keeping track of tempo-
ral and spatial changes, rather than just the latest version, is important. Related
but slightly different versions of an object can easily be maintained in an object-
oriented database. Object-oriented databases allow firms to structure their data
and use them in ways that would be impossible, or at least very difficult, with
other database models. An OO database is slow and therefore cannot be used
efficiently for transaction-processing-type data. Therefore, as indicated earlier, it
is sometimes combined with a relational database.

The Hypermedia The hypermedia database model stores chunks of information in the form

Database Model of nodes connected by links established by the user. The nodes can contain text,
graphics, sound, full-motion video, or executable computer programs. Search-
ing for information does not have to follow a predetermined organizational
scheme. Instead, users can branch to related information in any kind of rela-
tionship. The relationship between nodes is less structured than in a traditional
DBMS. In most systems, each node can be displayed on a screen. The screen
also displays the links between the node depicted and other nodes in the data-
base. Like OO databases, this database model is slow.

T3.6 DATA WAREHOUSES

A data warehouse is an additional database that is designed to support DSSs,
EISs, online analytical processing (OLAP), and other end-user activities, such as
report generation, queries, and graphical presentation. It can provide an
“executive view” of data and a unified corporate picture to the end users by
combining the data from many operational systems and incompatible databases
without affecting the performance of the running operational systems. It can
also provide the decision support system environment in which end users can
analyze timely information, and it increases the ability of end users to exploit
such information effectively by using data-mining tools or OLAP. The topic is
discussed at length in Chapter 10.

However, many companies are struggling to achieve measurable results from
their data-warehousing efforts. To be successful, data-warehousing initiatives must
adopt two basic concepts: (1) true and comprehensive integration across complete
data warehousing and business intelligence processes, and (2) a business-centered
focus that aims to deliver information that supports business users and addresses
business issues. SAP Business Information Warehouse (SAP BW) is the component

T3.22 "8 TECHNOLOGY GUIDES DATA AND DATABASES

of mySAP Business Intelligence (mySAP BI) that delivers enterprise-wide data
warehousing.

A data mart is smaller, less expensive, and more focused than a large-scale
data warehouse. Data marts can be a substitution for a data warehouse, or they
can be used in addition to it. In either case, end users can use the warehouse
and/or the marts for many applications, such as query, DSS/EIS, reporting,
OLAP, knowledge discovery, and data mining. It can increase the productivity
of the end users. Also see the description in Chapter 10.

T3.7 DATABASE MANAGEMENT

Database management, outside of purely technical hardware and software con-
siderations, consists primarily of two functions: database design and implementation,
and database administration.

In designing and implementing databases, specialists should carefully con-
sider the individual needs of all existing and potential users in order to design
and implement a database, which optimizes both processing efficiency and user
effectiveness. The process usually starts by analyzing what information each user
(or group of users) needs and then producing logical views for each. These log-
ical views are analyzed as a whole for similarities that can lead to simplifica-
tion, and then are related so that a single, cohesive logical database can be
formed from all the parts. This logical database is implemented with a particular
DBMS in a specific hardware system.

Database administrators are IT specialists responsible for the data as well
as for ensuring that the database fulfills the users” business needs, in terms of
functionality. User needs, like business in general, do not remain constant. As
the business environment changes, and organizational goals and structures
react, the database that the firm depends on must also change to remain effec-
tive. The computer hardware on which the DBMS software is installed must
change to meet changing environments or to take advantage of new technol-
ogy. This brings accompanying constraints and/or new opportunities for the
DBMS processing performance.

Further, database administrators need to ensure the reliability of databases
under their care by managing daily operations, including planning for emer-
gency contingencies by providing backup data and systems to ensure minimal
loss of data in the event of a disaster. Security is always a data administration
concern when there are multiple accesses to databases that contain all the
corporate data. Administrators must balance the business advantages of wide-
spread access with the threat of corporate espionage, sabotage by disgruntled
employees, and database damage due to negligence.

Database administrators also play a significant role in training users about
what data are available and how to access them. Finally, administrators are
responsible for ensuring that the data contained in the database are accurate,
reliable, verifiable, complete, timely, and relevant—a daunting task at best.
Otherwise-brilliant business decisions, based on wrong information, can be
disastrous in a highly competitive market.

One of the elements of contingency planning is data backup, which is of crit-
ical importance to any IT users. Tapes and diskettes are popular data backup
media because they are relatively cheap. There are two main methods of backup,
full backup and incremental backup. Full backup involves keeping a duplicate of

T3.8 EMERGING TECHNOLOGIES: IP-BASED STORAGE, SANs, AND NAS ey T3.23

the entire database; incremental backup involves keeping just the additional or
updated data each time the database is backed up. The incremental backup
method is more efficient because of shorter backup time, but it is not as safe as
full backup since loss of any one media may make recovery impossible.

Currently, there is a trend for users to back up data using a hard disk—what
is called the D2D (disk-to-disk) backup method. This method is actually a disk dupli-
cation using another hard disk as the backup medium. It is a relatively easier
operation than using tapes or diskettes and is now possible because the price of
hard disks has fallen a lot lately. A report from QualStar said that 58 percent of
respondents had already implemented the D2D backup method, and 25 percent
were planning to implement the D2D backup method within the next 24 months
(bitpipe.com/detail/RES/1089741706_761.html&src% 3Dzdib; see QualStar story).

Nowadays, it is imperative to have the computer systems online in 24 X 7 X
365, that is, in nonstop operation, partly because of e-business requirements. A
survey done by Ziff-Davis Media in March 2003 found that lost employee pro-
ductivity, lost revenue, and damaged company image were the top three conse-
quences of a disruption of service. HP’s Business Continuity Storage Solutions are
products to meet the need for continuous backup as a result of nonstop opera-
tions. HP’s OpenView Continuous Access Storage Appliance (CASA) is a replica-
tion applicance for SANs (see section T3.8), in which a new SAN fabric is used
to connect different SANs into a single logical pool of storage. HP’s OpenView
Storage Data Protector can help companies recover terabytes of data in minutes
rather in hours. HP’s StorageWorks Enterprise Virtual Array (EVA), used mainly
by data centers, can support heterogeneous environments (e.g., HP OpenVMS,
IBM AIX, Microsoft Windows, Novell Netware, and Sun Solaris).

T3.8 EMERGING TECHNOLOGIES: IP-BASED STORAGE, SANS, AND NAS

Storage connected to servers over IP (Internet protocol) networks, also known
as IP storage, enables servers to connect to SCSI (small computer system inter-
face) storage devices and treat them as if they were directly attached to the
server, regardless of the location. IP storage is a transport mechanism that seeks
to solve the problem of sending storage data over a regular network in the block
format it prefers rather than the file format generally used. IP storage can save
money by allowing a company to use its existing network infrastructure for
storage. We need to describe what IP-storage attempts to replace, in order to
understand why it is an improvement.

Traditionally, data management tasks are handled by tape and disk devices
directly attached to each server in the network, called direct attached storage
(DAS). Network storage devices are optimized for data management tasks.
These devices are attached to the corporate network and can be accessed from
networked applications throughout the enterprise. However, sending storage
data over the company network can seriously slow network speeds, which will
affect applications such as e-mail and Internet access. Enterprises have transi-
tioned much of their direct-attached storage (DAS) to networked storage.

Network attached storage (NAS) is an IP-based and Ethernet-based net-
work storage architecture replacing the general-purpose file server with a server
running a custom operating system that is optimized for data processing and
management. The optimized operating system improves file server performance
and supports features of RAID, caching, clustering, etc.

T3.24 " TECHNOLOGY GUIDES DATA AND DATABASES

TABLE T3.4 Pros and Cons of SANs and NAS

Pros Cons
SANs Off-loads storage traffic from Expensive—requires new
existing network sub-network
Flexible design improves reliability Manages data in blocks,

not files, so it requires
specialized software

Equipment is designed to be Requires fiber channel
highly scalable networking skills
NAS Uses existing network Slower—network protocols are
infrastructure not streamlined for storage
Manages data as files Loads already burdened

network with storage data,
including backup

Easy to install and use Doesn’t scale up easily

A storage area network (SAN) seeks to solve problems associated with
sending storage data over regular networks by building a separate, dedicated, high-
speed network just for storage devices, servers, and backup systems. It can handle
the heavy bandwidth demands of storage data and segregates storage traffic to a
network built specifically for storage needs. Communication between the applica-
tion server and the storage devices is done using a low-level block-based SCSI-3
protocol. SAN technology is implemented using either a direct point-to-point con-
nection or a network switch to a data storage farm. It is both expensive and com-
plicated to construct. A SAN requires specially trained management personnel and
uses relatively expensive hardware that may be incompatible among vendors.

IP or Ethernet networks enable cost-effective SANs to be deployed by a broad
market. Since IP storage runs over the existing Ethernet infrastructure, it retains
all of the existing networking. This offers interoperability, manageability, compat-
ibility, and cost advantages. People can use inexpensive, readily available Ethernet
switches, hubs, and cables to implement low-cost, low-risk IP storage-based SANs.
The advantages and disadvantages of SANs and NAS are shown in Table T3.4.

Although SANs and NAS have distinct profiles and different environments in
which they work best, several companies including DataCore Software (datacore
.com/products/prod_home.asp), Nishan Systems (mcdata.com/splash/nishan), Pirus
Networks (storagesearch.com/pirusnetw.html), and Vicom Systems (vicom.com/
library/cs_BCBSofTennesseeCompletes.shtml) are taking the advantages of both SANs
and NAS by producing software and devices that work with both. New standards
are being developed for both types of networked storage. The SCSI-over-IP pro-
tocol, called iSCS], is a new Internet Engineering Task Force (IETF) specification
that will let storage systems using SANs data transfer method send SCSI-style
blocks of data over an IP network. In addition, a protocol, developed by IETE
called Fiber Channel-over-IP, would allow an enterprise to connect a SAN at one
location with a SAN at another over an IP network

T3.9 DATA STORAGE INFRASTRUCTURE AND MANAGEMENT

Data Storage The Direct Access File System (DAFS) protocol is one of the important tech-
Infrastructure nologies in data center storage infrastructure. It is a collaborative effort among
dozens of vendors that will enable databases, Web servers, e-mail backends, and

Storage Resource
Management

T3.9 DATA STORAGE INFRASTRUCTURE AND MANAGEMENT iy T3.25

a host of other server-resident applications to achieve performance levels that
are simply unattainable in the pre-DAFS world.

Another important technology in data center storage is IBM’s Storage Tank
storage management system, which combines storage virtualization, enterprise
performance, policy-based storage management, and data sharing across het-
erogeneous storage systems at a greatly reduced total cost of ownership (TCO)
due to more simplified management. IP storage protocols like iSCSI can sim-
plify the complexity of SANs while allowing many customers to use a net-
working infrastructure with which they are comfortable or at least have already
deployed for other uses.

Analysts and consultants estimate that from 50 percent to 70 percent of
most companies’ capital technology budget is spent on storage. An analyst at
Gartner Group (May 21, 2003) reports that worldwide storage capacity will sky-
rocket from 283,000 TB in 2000 to more than 5 million TB by 2005 (hi.is/
~joner/eaps/wwwgrow4.htm).

In the long term, as part of the data center’s “re-architecting,” the storage
infrastructure will be transformed to provide storage automation for resource
pooling, provisioning, and policy-driven management. Two strategic storage trends
will continue in order to help IT departments: expansion of storage networking,
and the continued splitting of the storage pyramid into more categories. Ongoing
storage networking trends will include: storage networking intelligence, IP-based
storage networking, NAS-SAN convergence, and single-image file systems. Ongo-
ing storage pyramid trends will focus on lifecycle content management to deter-
mine where in the storage pyramid content in each lifecycle stage should reside.
Lifecycle content management builds around the concept of data temperature—
that is, hot to cold. Hot data are accessible immediately whenever needed; cold
data require some arrangement before they can be used. The trade-offs between
hot and cold data are value/cost versus the need for responsive access.

Storage resource management (SRM) and storage virtualization are pieces
of software that help manage storage as a whole entity rather than the disparate
bits of technology you actually own. It works much like network management
devices on corporate networks: The idea is to be able to have a bird’s eye view
of everything on the storage networks and allocate storage resources as needed.

Fujitsu’s Softek Storage Manager Software (az.softek.com/en/press/20020219-
001.html) is designed specifically to meet the complex storage management
requirements. Organizations are creating more information than they can man-
age, often doubling storage data each year. On the other hand, many current
storage resources are not effectively utilized; only 40% of storage capacity is
utilized. Softek Storage Manager has the following features highlights: central-
ized management—view and manage storage resources from a single console;
meaningful reporting—assess how storage resources are used and identify
capacity and performance trends with views at both the physical and logical
layer; operation across heterogeneous environments—monitor and manage
storage resources across hardware vendors, platforms and operating systems as
well as disparate storage topologies; automation of routine tasks—schedule
actions based on predefined criteria; business-process views—define and view
storage as it applies to the business model; management of storage related
costs—assess, utilize and where possible, reduce storage costs; management of
service-level requirements—proactively manage service levels as required by
the business.

T3.26 ", TECHNOLOGY GUIDES DATA AND DATABASES

Iomega is one of the mobile storage device manufacturers. Its Predator comes
with Hotburn mastering software for Windows XP and Mac, MusicMatch Jukebox
(musicmatch.com), and Adobe ActiveShare (adobe.com/products/activeshare/main.html)
to organize digital photos. Also, it has the buffer under-run protection.

Corporate storage networks often contain components built by different
manufacturers, each of which speaks in a proprietary computer language. EMC’s
WideSky module translates these proprietary languages into a single data for-
mat. EMC’s AutolS (now owned by Imation) includes a set of control modules
that lets systems administrators manage the storage network from a single con-
sole (see metherlands.emc.com/about/auto_is.jsp?openfolder=all, and tech-fag.com/stor-
age/widesky-emc.shtml).

InPhase Technologies has developed a holographic storage system (inphase-
technologies.com/technology). It can have storage capacity of 100 GB per disk. Tand-
berg Data’s O-Mass optical tape storage can store 1.2 TB per standard-size tape
cartridge. In the future, O-Mass claims that they would have 20 TB of data on
a single O-Mass (version 5) tape (tandberg.com/graphics/O-Mass/Documents/
0-Mass_2004_VI_200104.pdf).

REFERENCES

Alsop, S., “Without Metadata, Content Is Just Bits,” Fortune,
November 27, 2000.

Babcock, C., “Storage Stakes Rising,” Interactive Week, May 28,
2001.

Babcock, C., “Storage Vendors Whip Up Faster Data Recipes,” Inter-
active Week, May 21, 2001.

Babcock, C., “XML Databases Offer Greater Search Capabilities,”
Interactive Week, May 7, 2001.

Connolly, T. M., et al., Database Systems, 2nd ed. Reading, MA:
Addison-Wesley, 1998.

Connor, D., “Start-up Plots Storage Over IP Coup,” Network World,
May 22, 2000. crmandcontactcentre247.com/Customer_Database_
Solutions/Article2197.aspx #.

Date, C. J., An Introduction to Database Systems, 7th ed. Reading,
MA: Addison-Wesley, 1999.

Elmasri, R., and S. Navathe, Fundamentals of Database Systems.
Reading, MA: Addison-Wesley, 1999.

Eweek Labs, “What Technology Will Be the Most Important for
Storage Managers to Follow Over the Next Few Years?” Eweek,
November 26, 2001.

Goodhue, D., et al., “The Impact of Data Integration on the Costs
and Benefits of Information Systems,” MIS Quarterly, Vol. 16,
No. 3, September 1993.

Gray, P, and H. J. Watson, Decision Support in the Data Warehouse.
Upper Saddle River, NJ: Prentice-Hall, 1998.

Gupta, A., and J. Ranesh, “Visual Information Retrieval,” Communi-
cations of the ACM, Vol. 40, No. 5, May 1997.

Halper, M., “Welcome to 21st Century Data,” Forbes, Vol. 157,
No. 7, April 8, 1996.

Helft, D., “Power to Spare,” The Industry Standard, May 21, 2001.

Hilderbrand, C., “Why Squirrels Manage Storage Better Than You
Do,” darwinmag.com/read/040102/squirrels_content.html, February
2002.

Holstein, W. J., “Save EMC?” Business 2.0, September 2002.

Katz, M., ed., Technology Forecast: 1998 (also 1999, 2000). Menlo Park,
CA: Price Waterhouse World Technology Centre, 1998, 1999, 2000.
King, J., “Sorting Information Overload,” Computer World, Decem-
ber 2, 1996.

Kroenke, D., Database Processing: Fundamentals, Design, and Imple-
mentation, 7th ed. Upper Saddle River, NJ: Prentice-Hall, 2000.
McDonald, G., “More Data on Your Hard Drive,” Business2.com,
December 12, 2000.

Mearian, L., “Storage Conference: Long-term View Taking Prece-
dence,” ComputerWorld, April 10, 2001.

Metz, C., “Hot Spots Getting Hotter,” PC Magazine, August 2002.
Neel, D., and M. Apicella, “Tomorrow’s Storage,” infoworld.com,
April 15, 2002.

Ong, C., “DVDs Face a Challenge from Out of the Blue,”
Technology Post, February 25, 2003.

Post, G. V., and A. Kagan, “Comparison of Database Management
Systems,” Journal of Computer Information Systems, Summer 2001.
Ramakrishnan, R., and J. Gehrke, Database Management Systems.
New York: McGraw Hill, 1999.

Silberschatz, A., et al., Database Systems Concepts, 4th ed. New York:
McGraw Hill, 2001.

Sperley, E., The Enterprise Data Warehouse: Planning, Building,
and Implementation. Upper Saddle River, NJ: Prentice-Hall, 1999.
Stonebreaker, M., and D. Moore, Object-Relational DBMS: The Next
Great Wave. San Francisco: Morgan Kaufmann, 1996.

“Storage Trends: What Will Be Hot in 2003—And Beyond,”
aberdeen.com/2001/research/12020008.asp, January 2003.

Toh, A., “The Storage Behemoth,” CIO, December 2002.

Ulman, J. D., and J. Widam, A First Course in Database Systems. Up-
per Saddle River, NJ: Prentice-Hall, 1997.

“What’s New in Platforms and Storage,” http://Ilw8fd.law8.hotmail
.msn.com, January 2003.

Zaniolo, C., et al., Advanced Database Systems. San Francisco: Morgan
Kaufmann, 1997.

